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ABSTRACT

Factors responsible for extreme monthly rainfall over Texas and Oklahoma during May 2015 are assessed.

The event had a return period of at least 400 years, in contrast to the prior record, which was roughly a 100-yr

event. The event challenges attribution science to disentangle factors because it occurred during a strong El

Niño, a natural pattern of variability that affects the region’s springtime rains, and during the warmest global

mean temperatures since 1880. Effects of each factor are diagnosed, as is the interplay between El Niño
dynamics and human-induced climate change.

Analysis of historical climate simulations reveals that El Niño was a necessary condition for monthly rains

to occur having the severity ofMay 2015. Themodel results herein further reveal that a 2015magnitude event,

whether conditioned on El Niño or not, was made neither more intense nor more likely to be due to human-

induced climate change over the past century.

The intensity of extremeMay rainfall over Texas andOklahoma , analogous to the 2015 event, increases by

roughly 5% by the latter half of the twenty-first century. No material changes occur in either El Niño–related
teleconnections or in overall atmospheric dynamics during extremeMay rainfall over the twenty-first century.

The increased severity of Texas/Oklahoma May rainfall events in the future is principally due to thermo-

dynamic driving, although much less than implied by simple Clausius–Clapeyron scaling arguments given a

projected 23% increase in atmospheric precipitable water vapor. Other thermodynamic factors are identified

that act in opposition to the increase in atmospheric water vapor, thereby reducing the effectiveness of overall

thermodynamic driving of extreme May rainfall changes over Texas and Oklahoma.

1. Introduction

A challenge in determining human-induced impacts

on extreme weather is diagnosing both dynamic and

thermodynamic consequences of climate change on

event statistics. Dynamical changes in atmospheric

circulation associated with anthropogenic forcing are

generally less well understood than thermodynamic

changes (e.g., Shepherd 2014), in part owing to the lower

detectability of the former compared to the latter. One

perspective therefore proposes to treat the dynamics as

being largely unaffected by climate change, and to iso-

late only how an event is affected by changes in thermo-

dynamics (Trenberth et al. 2015). Another perspective,

which takes some account of dynamics, is to identify an

atmospheric circulation pattern having event relevance

and diagnose the interplay between that circulation and

climate change in the event’s production (e.g., Christidis
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and Stott 2015). Further, when large data volumes are

available, accounting can also be made of changes in the

atmospheric circulation itself, permitting one to estimate

the separate contributions of dynamic and thermodynamic

effects on extreme weather events (Vautard et al. 2016).

Here we assess how climate change affected an ex-

treme rainfall event using an approach similar to that of

Christidis and Stott (2015) that in addition separately

examines the effectiveness of changes in dynamic and

thermodynamic drivers. We apply a framework for in-

terpreting our results following Shepherd (2016), who

discusses the concept of dynamically conditioned causes

for extremes in a changing climate. The principal data

used in our study to apply such a formalism are coupled

ocean–atmosphere simulations of global climate span-

ning 1920–2100, described in section 2. Our approach

does not involve the construct of ‘‘factual’’ and ‘‘coun-

terfactual’’ climates as employed in some event attri-

bution studies based on atmospheric model experiments

(e.g., Pall et al. 2011; Massey et al. 2015; Vautard et al.

2016) but rather involves sampling of time slices from

the coupled model’s transient simulation. It is, however,

reliant on statistics of a particular model (albeit of a

large 40-member ensemble) and thus should be con-

trasted with the approach of Christidis and Stott (2015),

who likewise employ approximately 40-member coupled

model simulations but draw from seven different models.

We take a quantitative approach to determine causes

and changes in the occurrence of record-setting rains as

were observed in May 2015 over the southern Great

Plains. Texas and Oklahoma each reported monthly

rainfall that far exceeded their prior wettest May, and in

fact exceeded the prior wettest month since at least 1895.

These totals were accumulated from a nearly continuous

sequence of heavy rain storms that were linked to a

persistent atmospheric circulation pattern, a type of

teleconnection often experienced during El Niño
springs (e.g., Wang et al. 2015). During 2015, a

strengthening El Niño event was present and it has been

conjectured by Wang et al. that the dynamical effects of

the 2015 El Niño were strengthened due to climate

change, thereby making the extreme magnitude of the

event more probable. Our study tests the hypothesis that

human-induced dynamic and thermodynamic drivers

increased the likelihood and severity of an extremeMay

rainfall over Texas/Oklahoma (TX/OK) in 2015. It fur-

ther tests the hypothesis that El Niño, as a natural mode

of variability, was a necessary condition for such rains to

occur, and that climate change increased the effective-

ness by which El Niño–related teleconnection dynamics

influence the region’s extreme rainfall probabilities. Our

interpretation of necessity is consistent with Hannart

et al. (2016), who provided theoretical considerations on

necessity, sufficiency, and probabilities of causation for

extreme climate events.

It is well known that El Niño–Southern Oscillation

(ENSO) affects global weather and climate conditions

(e.g., Bjerknes 1969; Horel and Wallace 1981; Webster

1981; Hoskins and Karoly 1981; Hoerling et al. 1997;

Trenberth et al. 1998), including the likelihood of ex-

treme rainfall on daily to intraseasonal time scales (e.g.,

Gershunov 1998; Gershunov and Barnett 1998; Cayan

et al. 1999; Haylock et al. 2006; Grimm and Tedeschi

2009). Likewise, emerging research indicates that El

Niño and its teleconnections may change in a warming

world (e.g., Timmermann et al. 1999; Meehl and Teng

2007; Latif and Keenlyside 2009; Collins et al. 2010; Cai

et al. 2015). Our purpose is to apply robust methods that

might better quantify the individual contribution of El

Niño–related dynamics in causing the extreme event,

and how the production of that event in association with

El Niño has itself changed over time.

A description of the observational datasets used to

characterize the May 2015 extreme rains appears in

section 2a, while the climate simulations used herein are

described in section 2b. The statistical–dynamical

framework itself is described in section 3. Section 4

presents results of the application of our framework to

theMay 2015 extreme rainfall. Results of section 4 apply

extreme value theory, described in the online supple-

mental material, to explicitly determine how extreme

event statistics were affected by climate change. Section

5 presents a summary of principal findings and a dis-

cussion of the broader interpretation of results within a

framework of dynamic and thermodynamic drivers.

2. Datasets

a. Observational data

Contiguous U.S. precipitation for 1895–2015 is de-

rived from National Oceanic and Atmospheric Admin-

istration (NOAA) U.S. Climate Division data (NCDC

2002). Analyses of TX/OK averaged conditions are

constructed by area-weighting the 10 and 9 individual

climate divisions available for Texas and Oklahoma,

respectively. Monthly precipitation for the domain av-

erages is calculated, and we focus our analysis on May

during which the 2015 extreme rainfall occurred. For

global analysis of observed precipitation, we utilize the

CPCMerged Analysis of Precipitation (CMAP) dataset

spanning 1979–2015 (Xie and Arkin 1997).

Global sea surface temperatures (SSTs) from 1895 to

2015 are obtained from the merged Hadley–NOAA/OI

sea surface temperature and sea ice concentration

dataset (Hurrell et al. 2008). The SST anomalies of May
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2015 are calculated relative to the historical climatology

of May SSTs from 1895 to 2014. Geopotential heights at

250hPa (Z250) for 1948–2015 are based on the NCEP–

NCAR reanalysis dataset (Kalnay et al. 1996).

A May exceedance of SST anomalies in the Niño-3.4
region (58S–58N, 1708–1208W) relative to a 1948–2014

climatology is calculated, in which SST anomalies more

than one standard deviation above the climatology

mean are considered El Niño events. Composites of

Z250 anomalies relative to a 1948–2014 climatology are

made based on the historical May El Niño events and

May 2015 El Niño, respectively.

b. Model data

Climate simulations are based on the 40-member runs

of the NCAR Community Earth System Model version

1 (CESM1; Kay et al. 2015). The model is subjected to

observed estimates of time varying greenhouse gases,

anthropogenic aerosols, and solar and volcanic aerosol

variability during 1920–2005 (‘‘all forcing’’ simulations),

and by anRCP8.5 scenario for greenhouse gas emissions

and anthropogenic aerosol changes for 2006–2100. The

May monthly rainfall, Z250, and SST simulations from

1920 to 2080 are available on a 1.258 3 18 grid for

CESM1. The model data of precipitation are inter-

polated to U.S. Climate Divisions, and TX/OK May

averages are calculated.

Simulated El Niño events during 1920–2015 are iden-

tified as in observations except relative to a 1920–2015

climatology for each run of CESM1. We define SST

anomalies more than one standard deviation above

(below) the climatology mean as El Niño (La Niña), and
the rest as neutral cases. Additionally, in order to in-

vestigate the climate change effects on El Niño–related
extreme rainfall, we also compare statistics across three

different periods, 1920–50, 1985–2015, and 2050–80,

which are representatives of historical, recent past, and

future climate. We selected the 30-yr period immedi-

ately prior to 2015 to assess if there were indicators for a

change in the event likelihood since the early twentieth

century that might have led one to anticipate the ex-

treme event of May 2015. For each 30-yr period, the

SSTs and the Z250 are first detrended, and anomalies

are calculated relative to their respective 30-yr clima-

tology for each member of CESM1. In this manner, any

SST trend is removed so as to model changes in El Niño
frequency that is not conflated with a warming trend.

TheNiño-3.4 SST standard deviation, used to identity El

Niño events, is computed separately for each 30-yr pe-

riod with values that vary from 0.628 to 0.818C among the

periods. We have tested the sensitivity of our analysis to

alternate El Niño threshold assumptions, for instance

using a single standard deviation threshold based on the

1920–2015 model simulation period. While affecting the

sample sizes of El Niño events so identified, our sub-

sequent calculations of statistics of El Niño–conditioned
extreme rainfall probabilities are robust to either a

varying El Niño frequency or a different El Niño mag-

nitude threshold assumption.

Differences in climate statistics among these three

periods are principally related to changes in human-

related emissions of greenhouse gases and anthropo-

genic aerosols. In subsequent sections, we will refer to

these effects as human-induced climate change, or

sometimes simply as climate change. The large samples

of model data permit statistically robust estimates of

differences in the frequency and intensity of TX/OK

precipitation extremes in relation to different ENSO

phases in each study period, an exercise not possible

from observations alone. We apply Bayesian inference

for estimating parameters of the generalized Pareto

distribution (GPD) to derive return levels of extreme

rainfall, the details of which are provided in the online

supplemental material.

3. A statistical–dynamical framework for assessing
the individual and mutual effects of climate
change and ENSO on extreme events

A statistical–dynamical framework is used to de-

termine the combined effects of El Niño and anthro-

pogenic climate change on an extreme rainfall event. A

variety of approaches are beginning to be utilized in the

nascent science of attributing individual weather events

to human influence (e.g., Herring et al. 2015; National

Academies of Sciences, Engineering, and Medicine

2016). In concept, our study is most similar to those that

account for conditions at the place and time of the

event’s happening (e.g., Perlwitz et al. 2009; Pall et al.

2011; Dole et al. 2011; Hoerling et al. 2013, 2014;

Christidis and Stott 2015).

Conceptually, our approach follows Shepherd (2016)

by examining the conditionality of extreme monthly

rains associated with a variety of factors and physical

processes that are believed to be important in un-

derstanding the 2015 event’s likelihood and severity.

Shepherd (2016) illustrates the concept of extreme event

probability conditioned on some dynamical process us-

ing the following statistical formulation:

P(E) 5 P(EjD)P(D) 1 P(EjND)P(ND), (1)

where E is the extreme event, which can represent the

occurrence of the extreme event or the magnitude/se-

verity of the event, D is some dynamical situation, and

ND is not that dynamical situation (i.e., the complement

1 FEBRUARY 2018 CHENG ET AL . 1031



of D). Examples of D include a particular atmospheric

circulation (see Christidis and Stott 2015) such as

blocking (see Dole et al. 2011), or a phase of ENSO as

studied herein. Note that P(D) denotes the probability

of the dynamical situation and P(EjD) denotes the

conditional probability of the extreme event in the

presence of that dynamical situation, while P(EjND) is

also a conditional probability of the event except linked

to the absence of that dynamical process whose proba-

bility is given by P(ND).

Varying Eq. (1) under the assumption of small dif-

ferences, Shepherd (2016) expresses long-term changes

in event probability (e.g., due to anthropogenic forcing

or other factors) as

dP(E)5 dP(EjD)P(D)1P(EjD)dP(D)

1 d[P(EjND)P(ND)] . (2)

Under the assumption that D is the predominantly

present when an event occurs, Eq. (2) can be simplified

as

dP(E)5 dP(EjD)P(D)1P(EjD)dP(D) . (3)

Two factors contribute to changes in event probability

[i.e., dP(E)]: changes in probability of the dynamical

condition itself [i.e., dP(D)] and changes in the un-

derlying physical relationship between the event and

attending dynamical condition [i.e., dP(EjD)].

The generic notation of P(EjD) indicates a physical

relationship linking the dynamical condition (D) and the

extreme event (E). For instance, f :D/
a
E, where Dand

E are connected by the physical relation a, which can

involve both underlying dynamic and thermodynamic

processes. In the context of change as expressed by (3),

the change in conditional event probability can be

modulated by changes in both underlying dynamic and

thermodynamic processes, which are encapsulated by

the link indicator a. Under a linear approximation,

changes in the physics that determine extreme event

likelihood are expressed as follows:

da5 a
1
3 ddynamic1 a

2
3 dthermodynamic1 a

3
, (4)

where a1, a2, and a3 are regression coefficients of the

dynamic and thermodynamic processes. Thus, even if

the dynamic condition D were unaffected by climate

change [dP(D)5 0], the relationship of D and E (as

modulated by a) can nonetheless be affected via changes

in physical processes. The term dP(EjD) in (3) therefore

indicates a change in the extreme event probability re-

sulting from a change in the underlying physical in-

terrelationship. In the context of our particular situation

of TX/OK rains, this could involve both dynamic pro-

cesses via a change in the Rossby wave response to El

Niño (e.g., changes in the climatological waveguide that

modulate the poleward and eastward dispersion of en-

ergy emanating from the El Niño region) and thermo-

dynamic processes (un)related to El Niño dynamics via

changes in water vapor and thermal stability (i.e., local

factors that modulate the potential for heavy precipita-

tion generation).

We will have occasion to refer to this heuristic

framework when interpreting our diagnostic results on

the causes for the extreme May 2015 TX/OK rains. In

our paper, the extreme event (i.e., E) of Eqs. (1)–(3) is

theMay 2015 rainfall averaged over TX/OK or a rainfall

magnitude comparable to that event, while the concur-

rent 2015 El Niño is a conditioning dynamical compo-

nent (i.e., D). We will subsequently show that an event

having the intensity of theMay 2015 rains was extremely

unlikely without El Niño as a dynamical conditioning

factor, justifying a focus on Eq. (3) as an analytical

framework.

4. Results

a. Comparing observed and modeled May
precipitation for TX/OK

Figure 1 presents the 1895–2015 time series of ob-

served May rainfall averaged for TX/OK. The 2015

monthly rainfall total of 258mm was about 50% greater

than the prior record of 170mm, which also occurred

during an El Niño in May 1957. TX/OK May rainfall

exhibited a slight, but statistically insignificant, negative

trend over the period 1895–2014 that preceded the oc-

currence of the extreme 2015 rainfall event.

We define a threshold for extreme rainfall as May

totals exceeding a 90th quantile of the 121 historically

observed TX/OK May monthly rainfall totals. This

threshold is about 130mm. The May 2015 event (red

dot) was the most severe of all prior exceedances (12

green dots), having a total rainfall that was double the

90th quantile threshold. The purpose of defining such a

FIG. 1. Observations of May rainfall from 1895 to 2015. The

horizontal blue line represents the climatology of 1895–2014. The

dashed line represents the three standard deviations of the his-

torical May rainfall from 1895 to 2014. The green dots are the prior

12 events exceeding the 90%quantile of the historicalMay rainfall.

The red dot is the May 2015 event.
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threshold is to derive meaningful statistics of the tail

distribution constructed with threshold exceedances

so as to interpret the severity and likelihood of one

particular extreme case: the 2015 event [i.e., E of Eqs.

(1)–(3)].

Figure 2 compares histograms of TX/OKMay rainfall

based on the historical observations (Fig. 2a) and the

historical CESM1 simulations (Fig. 2b). The two distri-

butions are quite similar, although with a wet bias in the

model. Threshold values for extremes will be based on

each dataset’s 90th quantile statistic, which corresponds

to 130mm in observations and 144mm inCESM1 (green

lines). The CESM1 large ensemble yields 345 extreme

May rainfall events exceeding a 90th quantile during

1920 to 2015.

We next compare observed and model statistics for

peaks beyond their respective exceedance thresholds

using the Bayesian-GPD approach. Figure 3 shows the

box-and-whisker plots of posterior distributions of the

(left) scale and (right) shape parameters of theGPDs for

observations (black) and CESM1 (gray), separately. To

facilitate meaningful comparisons, the model analysis is

based on sample sizes similar to the observed sample

size by applying theGPD analysis to each run of CESM1

separately. The box-and-whisker plots show the aggre-

gate results of all 40 runs; for instance, the median value

plotted in Fig. 3 can be interpreted as the average value

of the medians of each run’s distribution. The CESM1-

based GPD parameters indicate lower variance (smaller-

scale parameter) but a heavier tail (larger positive shape

parameter) of extreme values compared to observations.

These biases operate in opposite directions in terms of

affecting extreme event statistics; for example, the model’s

heavier tail enhances extreme value probabilities. Results

using various exceedance thresholds (e.g., 75th, 80th, and

85th quantiles) are not significantly different from using a

90th quantile.

b. Unconditional probabilities of the May 2015 TX/
OK rains

We first estimate the unconditional probability of the

May 2015 TX/OK rains [i.e.,P(E)]. Figure 4 summarizes

the return period (abscissa) and the return level (ordinate)

of historical extreme May rainfall averaged across the

domain of TX/OK.Historical observations for 1895–2014

reveal that the magnitude of 2015 extreme rain event

(solid circles) was considerably more intense than the

prior record (open circles), with the prior highest May

rainfall total likely being a ‘‘weak record’’ in so far as

its estimated return period is approximately 50 to 100

years. By contrast, the extreme value of the 2015 event

falls into the 90% uncertainty of our estimates for a

400-yr return level. This is the case even when the 2015

event is included in the assessment (not shown). The

results indicate that the TX/OK May 2015 flood was

highly unusual from a historical perspective.

Repeating the analysis by leveraging the large sam-

ples available from the climate model largely supports

the observational inference of the extreme character of

theMay 2015 rains. Each single run of CESM1 simulations

for 1920 to 2015 is diagnosed in the manner analogous to

observations, and Fig. 4 shows the box-and-whisker plots

of the aggregate results of all 40 runs. The model-based

analysis reveals the observed 2015 extreme event was

also close to a 400-yr (or longer period) event (also see

Fig. A1, which utilizes the tail of CESM1 simulations to

FIG. 2. Histogram plots of probability density functions (PDFs) for (a) the observed May

precipitation from 1895 to 2015 and (b) the CESM1 simulations of May rainfall from 1920 to

2015. The vertical green lines represent the threshold of the 90% quantile based on the his-

torical observations from 1895 to 2014 and the CESM1 simulations from 1920 to 2015,

respectively.
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produce return level analysis for a continuous spectrum

of return periods to 1000 yr). This result, along with

Fig. 3, leads us to view CESM1 as a reasonably suitable

tool for assessing return level and return period of ex-

treme monthly rainfall occurrences such as the May

2015 event.

c. Conditional probabilities of extreme TX/OK rains
associated with ENSO states

Given that a strong El Niño event occurred in 2015

(Fig. 5a), we examine how TX/OK extremeMay rainfall

probabilities are conditioned by SST variability in the

tropical east Pacific. First we note that, antecedent to the

2015 event, both historical observations (Fig. 5b) and

model simulations (Fig. 5c) reveal the wettest Mays over

TX/OK to preferentially occur in concert with warmer

than normal central and eastern equatorial Pacific SSTs.

The results thus support an argument, first proposed by

Wang et al. (2015), that the extreme 2015 TX/OK rains

may have had a dynamical cause tied to El Niño. The
agreement in SST patterns between observations and

model is remarkably high in the Indo-Pacific basin, at-

testing to the realism of the model’s SST response to El

Niño, and we will subsequently examine the dynamical

processes associated with tropical–extratropical in-

teraction linking TX/OK May rains to tropical Pacific

SST variability (section 4e). We note here that CESM1

realistically simulates key features of the local and re-

mote atmospheric responses associated with El Niño
during May (see appendix B), and that the El Niño wet

signal over TX/OK in the historical composite is re-

alistically simulated as part of CESM1’s teleconnection

processes (not shown).

We diagnose the individual effects of El Niño and La

Niña/ENSO-neutral tropical Pacific states on extreme

TX/OK rains, thereby providing estimates for P(EjD)

and P(EjND) in Eq. (1), respectively. The results in

Fig. 6 are based only on the large-ensemble CESM1

simulations, recognizing that a similar analysis using

observations is not feasible owing to the small sample

size. The extreme event statistics of Fig. 6 are derived

from exceedances above the 90% quantile for May

rainfall that were further conditioned on ENSO phase,

resulting in 64 and 62 samples for El Niño and La Niña,
respectively. Figure 6 shows TX/OK May extreme

rainfall statistics corresponding to El Niño (green), La

Niña (purple), and ENSO-neutral (yellow) conditions.

A strong conditioning of heavy rainfall statistics to

ENSO phase is revealed. For all return periods, the

median precipitation amount associated with extreme

events is about 30% greater during El Niño than during

La Niña. An event magnitude that would occur every

FIG. 3. Posterior distributions of distribution parameters of (a) scale and (b) shape for observations (black) and 40

runs of CESM1 (gray), separately.
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50 El Niño years (;190mm) occurs at most about every

400 La Niña years considering a 90% uncertainty range.

Of particular importance, the results of Fig. 6 indicate

that El Niño was virtually a necessary condition for the

occurrence of an extreme rainfall event over TX/OK

having the observed magnitude in 2015. The occurrence

of an event having a magnitude as large as was observed

in 2015 (closed circle) can only be reconciled with the

presence of the dynamical forcing associated with El

Niño. Our finding is also supported by the alternative

examination in which the El Niño–related return level is

shown as a continuous function of the extended return

period (see Fig. A2). CESM1 simulations indicate that

the event (i.e., a May rainfall equal to or exceeding

258mm) was exceedingly unlikely to occur in the ab-

sence of El Niño (i.e., either ENSO-neutral or La Niña
ocean states).

El Niño alone was certainly not the sole factor re-

sponsible for the totality of the rains that fell over TX/

OK in May 2015, despite being critical for achieving its

record setting extreme peak value. Other factors may

also have conditioned the likelihood for such an event.

In particular, the results of Fig. 6 do not address how

human-induced climate change may also have played a

role in so far as that analysis aggregated all statistics of

extreme May rainfall during 1920–2015 in the CESM1

simulations. We thus turn next to the question how the

further conditionality associated with climate change, in

tandem with El Niño, affected the odds of the May

2015 event.

d. Mutual effects of anthropogenic contributions and
El Niño on extreme TX/OK rains

We diagnose statistics of May TX/OK El Niño–related
extreme rainfall events for three nonoverlapping pe-

riods (1920–50, 1985–2015, 2050–80) in order to iden-

tify the role of human-induced climate change in the

presence of El Niño interannual forcing. This diagnosis

is akin to a calculation of the second term in Eq. (3)

[i.e., dP(EjD)]. As a context for changes in extremes,

Fig. 7 presents analysis of the simulated changes in

mean climate (2050–80 minus 1920–50) for (top) sur-

face temperature, (middle) precipitation, and (bot-

tom) column precipitable water. These mean changes

are broadly consistent with CMIP5 climate model

simulations overall (e.g., IPCC 2013) in revealing a

warmer world, having increased atmospheric water

vapor. The simulated May climate over TX/OK is

3.68C warmer, receives 6%more rainfall, and has 23%

greater column precipitable water during 2050–80

compared to 1920–50.

Figure 8 presents extremeMay rainfall event statistics

associated with El Niño during the early twentieth

century (blue), the recent past (red), and the late twenty-

first century (magenta). The results indicate no signifi-

cant difference in the likelihood of extremeMay rainfall

FIG. 4. Return level (mm) and return period (yr) estimations for observations (black) andCESM1 simulations (gray),

respectively. The results are based on the exceedances above 90% quantile of May rainfall using observations prior to

May 2015 and 40 runs of CESM1 simulations from 1920 to 2015. Box plots of distributions of return levels show the

median (center mark) and the 25th (lower edge) and 75th (upper edge) percentiles, and the whiskers quantify the 95%

credible interval. Red dots are the observed TX/OK May 2015 rainfall and red circles are the prior event.
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FIG. 5. Observed and CESM1 simulated SST anomalies (8C). The observed

May 2015 anomalies are calculated relative to (a) the 1895–2014 climatology and

(b) the averaged observations ofMay SST anomalies corresponding to thewettest

May precipitation quintile from 1895 to 2014. (c) CESM1 ensemble mean of May

SST anomalies corresponding to the wettest May precipitation quintile from

1920–2014.
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under recent-past climate conditions compared to the

early twentieth century—the box-and-whisker plots re-

veal the interquartile range to be statistically in-

distinguishable across all severities ranging from 50- to

400-yr return periods (also see Fig. A3). A similar result

occurs based on diagnosis of the unconditional proba-

bility of extreme May rainfall (see Fig. A4), indicating

that, regardless of ENSO phase, no significant change in

TX/OK extreme rainfall likelihoods has occurred during

1985–2015 relative to 1920–50. Of particular relevance

toward explaining causes of an event having the mag-

nitude of the 2015 May rains, comparison of the condi-

tional (Fig. 8) and unconditional (Fig. A4) probabilities

reveals that the dynamical effect of El Niño was a req-

uisite condition for the occurrence of such an extreme,

whereas climate change was not.

Turning to projections for the latter half of the twenty-

first century (magenta box plots), a modest but statisti-

cally significant increase in extreme May precipitation

during El Niño events occurs relative to the early twenty-

first century, affirmed by the two-sample Kolmogorov–

Smirnov (KS) test at the 95% significance level. Estimated

return levels are about 5% greater (wetter) than for their

current climate counterparts. Furthermore, a nearly iden-

tical 5% increase in return levels for unconditional and

El Niño–conditioned samples (cf. Figs. 8 and A4) im-

plies that the third term of Eq. (3) is negligible. The

impact of changes in the El Niño dynamical condition

[i.e., dP(D)] is thereby judged to be secondary to changes

in the physical linkage of El Niño to TX/OK extreme

rains [i.e., dP(EjD)].

We will show in the next section that this projected

5% increase in extreme May rainfall threshold exceed-

ances is not symptomatic of a change in El Niño–related
dynamics (e.g., atmospheric teleconnection pattern

linking El Niño SST forcing with TX/OK May rainfall),

but appears to be mainly a consequence of thermody-

namic changes. These increases in extreme event mag-

nitude are quite similar to themeanMay rainfall increase,

but are appreciably less than the 23% increase in TX/OK

atmospheric precipitable water. Indicated here is that the

projected change in extreme event magnitude is much

less than predicted by a Clausius–Clapeyron relation.

Possible reasons for that difference will also be sub-

sequently provided, but suffice it to state here that a

similar result is found when repeating the analysis of

Fig. 8 but for daily rainfall over the region rather than

for monthly averages (not shown).

e. Changes in physical linkages between El Niño and
TX/OK extreme May rainfall

The absence of change in extreme May rainfall asso-

ciated with El Niño events in the recent past compared

to the early twentieth-century climate [i.e., dP(EjD)’ 0]

does not necessarily indicate that underlying physical

processes linking El Niño and TX/OK extreme May

FIG. 6. Return level (mm) and return period (yr) estimations based on the exceedances above the 90%quantile of

May rainfall associatedwith ElNiño (green), LaNiña (purple), and neutral (yellow) usingCESM1 simulations. Box

plots of distributions of return levels show the median (center mark) and the 25th (lower edge) and 75th (upper

edge) percentiles, and thewhiskers quantify the 95% credible interval. Red dots are the observed TX/OKMay 2015

rainfall and red circles are the prior event.
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FIG. 7. Averaged composites of CESM1 data for 2050–80 Mays minus

1920–50 Mays for (a) reference height temperature (8C), (b) precipitation in per-

cent (%), and (c) precipitable water in percent (%).
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rainfall have not changed [i.e., da’ 0 in Eq. (4)]. Here

we assess how El Niño–related SSTs and various aspects

of its associated atmospheric teleconnection linking

El Niño to TX/OK May rainfall have varied through

time based on the large-ensemble CESM1 simulations.

The results reveal no material changes in the overall

atmospheric dynamics during extreme May rainfall

events over TX/OK, including the El Niño–related
teleconnection.

To illustrate, the left panels of Fig. 9 present observed

composites of tropical Pacific SST and rainfall anoma-

lies, and Pacific–North American Z250 anomalies for

historical May El Niño conditions, key features that

define El Niño and its related dynamics. These are

compared to the anomalies observed during the May

2015 extreme event, whose similarity reaffirms that El

Niño constitutes an important conditioning factor for

extreme rains over TX/OK.Appendix B (see Figs. B1–B3)

presents analogous diagnostics based on May El Niño
composites derived from the CESM1 large ensemble

experiments, shown for each of the three time-slice

windows. The simulated El Niño and its related dy-

namics (left side panels) are in good qualitative agree-

ment with the observed El Niño composites including a

composite El Niño wet signal over TX/OK (not shown).

Additionally, model composites based on occurrences

of extreme TX/OK May rainfall in tandem with El

Niño conditions (right side panels) reveal many 250-hPa

height features analogous to those observed in 2015.

Also note the similarity in tropical Pacific SST anomaly

composites among the three periods, especially between

the early twentieth century (Fig. B1b) and the late

twenty-first century (Fig. B1f). Suggested hereby is a

negligible long-term change in the CESM1’s simulated

dynamical condition (D) accompanying extreme May

rainfall over TX/OK, again supporting our earlier in-

terpretation that the second right-side term of Eq. (3)

is small.

We next sample three geographical regions (see cap-

tion of Fig. 10), spanning the El Niño teleconnection

chain that links El Niño physically to TX/OK rainfall,

and present diagnoses of the respective variables in

Fig. 9 for each of the 30-yr periods. Shown in the lower

panels of Fig. 10 are the statistics for these variables

(Niño-3.4 SST, Niño-3.4 rainfall, and western North

America 250-hPa heights) based on CESM1 simulated

El Niño events. These are created for each of the three

time slices, with all anomalies calculated relative the

respective period’s 30-yr climatology. The mean Niño-
3.4 SST anomaly during El Niño is ;18C, though with

some differences in the means among the three time

slices (Fig. 10d), being greatest during the early twenty-

first century and weakest during the early twentieth

century. This is consistent with the fact that CESM1’s

Niño-3.4 SST variability is highest overall during the

early twenty-first century as previously indicated in

FIG. 8. Return level (mm) and return period (yr) estimations based on the exceedances above the 90%quantile of

El Niño–related May rainfall during 1920–50 (blue), 1985–2015 (red), and 2050–80 (magenta) using CESM1 sim-

ulations. Box plots of distributions of return levels show the median (center mark) and the 25th (lower edge) and

75th (upper edge) percentiles, and the whiskers quantify the 95% credible interval. Red dots are the observed TX/

OK May 2015 rainfall.
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section 2b, reasons for which are beyond the scope of

this paper to pursue. Suffice it to note that there is also a

commensurately stronger equatorial Pacific enhanced

rainfall during those slightly stronger El Niño events of

the recent past (Fig. 10e). Importantly, however, as

concerns the immediate impact on TX/OK, there is no

significant difference (also affirmed by the KS test) in

the intensity of the mean 250-hPa low pressure anomaly

positioned immediately west of TX/OK that forms part

of the upper-air teleconnection chain (Fig. 10f). The

upper tropospheric responses to El Niño across the en-

tire Pacific–North American sector are broadly similar

for the three time-slice composites (see Fig. B3).

A further indication that overall atmospheric dy-

namics have not materially changed during occurrences

of extremeMay rainfall events is provided by analysis of

FIG. 9. (top) Averaged composites of observed Hurrell SST anomalies (8C) based on (a) May El Niño events and (b) May 2015 relative

to the May climatology of 1948–2014, respectively. (middle) Averaged composites of observed CMAP precipitation anomalies (mmday21)

based on (c) May El Niño events and (d) May 2015 relative to the May climatology of 1979–2014, respectively. (bottom) Averaged

composites of observed geopotential height anomalies (m) at 250 hPa (Z250) based on (e)MayEl Niño events and (f)May 2015 relative to

the May climatology of 1948–2014, respectively.
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midtropospheric vertical motion averaged over TX/OK.

The top panels of Fig. 10 summarize statistics of all ex-

treme May TX/OK rainfall events which were used to

perform the Bayesian–GPD analysis of sections 4b, 4c,

and 4d. There are approximately 20 samples comprising

each distribution for each of the three time slices. The

anomalous vertical motion (Fig. 10b) is consistently

upward during extreme rainfall events in each sampled

30-yr period (negative 500-hPa v anomalies), and the

three histograms are statistically indistinguishable. It is

interesting to note that a variety of monthly-mean at-

mospheric circulation patterns yield such upward verti-

cal motion supporting heavy May rainfall. This is

suggested by the wide spread in the PDFs of 250-mb

height anomalies (Fig. 10c), for which one finds a few

samples having monthly mean positive heights over the

area immediately west of the TX/OK region. Note also

that the mean value of the height anomalies associated

withCESM1 extreme rainfall events (;230m) is roughly

double the magnitude of the El Niño–related mean

height anomalies (see Fig. 10f), indicating that El Niño
is not the only dynamical process capable of producing

extreme May rains over TX/OK.

Concerning thermodynamic indictors accompanying

extreme May rains, Fig. 10a shows the column pre-

cipitable water averaged over TX/OK—the mean

anomaly is positive and of comparable magnitude

(;12.5 kgm22) for each period. It is perhaps surprising

that some of the extreme May rainfall events actually

have below average May precipitable water associated

with them. Indeed, we find only a weak correlation be-

tween water vapor content and the intensity of extreme

May rains among the samples comprising these PDFs

(Fig. 11). Such aweak constraintmay beone reasonwhy a

simple Clausius–Clapeyron thermodynamic perspective

alone could overestimate the expected response of ex-

treme rains to climate change in the situation under

study herein. Other thermodynamic changes also occur,

FIG. 10. PDFplots of TX/OK regionMayElNiño events fromCESM1data for three periods 1920–50 (blue lines), 1985–2015 (red lines),

and 2050–80 (magenta lines). The top row includes only wettest May El Niño events for (a) precipitable water averaged over the region

288–378N, 1048–948W, (b) vertical velocity averaged over the region 288–378N, 1048–948W, and (c) 250-hPa height averaged over the

region: 258–408N, 1158–1008W (c). The bottom row includes all May El Niño events for (d) surface temperature, (e) precipitation, and

(f) 250-hPa height all averaged over the region 58S–58N, 1708–1208W.
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as discussed in section 5, and these may require con-

sideration when drawing inferences about thermody-

namic driving of extreme rainfall.

In summary, the overall atmospheric dynamics ac-

companying extreme TX/OK May rainfall appear to

have not materially changed. Our interpretation of the

various analyses is that the roughly 5% increase in

return levels for extreme May rains results principally

from thermodynamic changes, although these are less in

magnitude than expected by a Clausius–Clapeyron

relationship.

5. Summary and discussion

a. Summary

Among their recommendations to improve robustness

in event attribution, the National Academies of Sciences,

Engineering, and Medicine (2016) highlighted a need to

better understand effects of both dynamics and thermo-

dynamics in the development of extreme events, and to

improve diagnosis of the interplay between natural vari-

ability and climate change. The current study has ad-

dressed both of these recommendations. It examined

how El Niño–related dynamics may have changed in a

warming world in a manner that could have altered the

intensity and likelihood of an extreme rainfall event. It

also presented a formalism for assessing the role of dy-

namic and thermodynamic factors, and how they inter-

acted to affect an extreme event.

We posed the hypothesis that human-induced dy-

namic and thermodynamic drivers increased the likeli-

hood and severity of an extremeMay rainfall event over

Texas/Oklahoma in 2015. We tested the hypothesis that

El Niño, a natural mode of variability, was a necessary

condition for such rains to occur, and that climate change

altered the effectiveness by which El Niño–related

teleconnection dynamics drive the region’s extreme

rainfall probabilities. Furthermore, we tested whether a

simple thermodynamic consideration (e.g., a Clausius–

Clapeyron relation) is sufficient for explaining the oc-

currence of the 2015 rainfall by examining its strength

and effectiveness in constraining the magnitude of such

extreme events.

The unusually strong 2015–16 El Niño was comingled

with the warmest global mean temperatures since the

late nineteenth century, providing an excellent labora-

tory in which to apply a framework for event attribution.

The case challenged our ability to disentangle various

factors in a quantifiable manner, and with estimated

uncertainty. Our diagnosis first demonstrated within

both model and observational data of the last century

that the prior TX/OK May rainfall record (which oc-

curred in 1957) was likely a weak record, being a 50–

100-yr event. Its recent exceedance was therefore not

surprising. However, we found that the magnitude of

2015 rains constituted a very rare occurrence (400-yr or

longer return period), which could not have been readily

foreseen from perspective of the prior century-long

historical record. The reasonable question thus arose,

which the paper’s hypothesis articulates, of whether the

likelihood of such an event has materially changed

during the course of the last century. To the extent that

climate change was a factor, then perhaps what ap-

peared like a ‘‘climate surprise’’ in May 2015 over TX/

OKwas in fact made more probable in recent years than

the longer history forewarned.

El Niño alone was found to be a critical condition for

such an extreme event to occur in 2015. Analysis of a

large (40 member) ensemble of CESM1 simulations for

1920–2015 indicated an extreme rainfall magnitude as

large as observed in 2015 to be irreconcilable with either

La Niña or ENSO-neutral states of the tropical Pacific.

FIG. 11. Scatterplots of TX/OK region wettest May El Niño events from CESM1 precipitable water vs precipitation for three periods

1920–50, 1985–2015, and 2050–80, respectively.
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The results support an argument that the record-setting

May 2015 rains over TX/OK could only have occurred

in a climate that was conditioned by El Niño. Our hy-

pothesis that El Niño was a necessary condition for such

rains to occur over TX/OK in May 2015 is thereby

affirmed.

Using the same ensemble simulations, we formed time

slice analyses for early-twentieth-century and recent-

past conditions and examined how a century of climate

change affected the El Niño–related teleconnection

dynamics and its driving of extreme May rain occur-

rences over TX/OK. The results revealed that no ma-

terial changes appear in the overall atmosphere dynamics

during extreme TX/OK May rainfall, including the El

Niño–related dynamics. Further diagnosis supported an

argument that the observed May 2015 event was not

made more intense or become more likely as a result of

human-induced climate change over the past century.

We thus reject the hypothesis that climate change has

altered, to date, the effectiveness by which El Niño–
related teleconnection dynamics drive the region’s ex-

treme May rainfall probabilities.

We further examined climate change impacts by an-

alyzing the CESM1 ensembles for their projections to

the latter half of the twenty-first century under the

RCP8.5 scenario of greenhouse gas emissions. The

analysis of a third time slice (2050–80) revealed a sta-

tistically significant increase in El Niño–related extreme

May rainfall over TX/OK. Thus, whereas human-induced

climate change over the last century was found to not

FIG. 12. Averaged composites of relative humidity (%) from CESM1 simulations for 2050–80

minus 1920–50 at levels of 850 and 1000mb, respectively.

1 FEBRUARY 2018 CHENG ET AL . 1043



materially affect the region’s May extreme rainfall sta-

tistics, the results indicate a doubling in the frequency of a

100-yr May rainfall event comparable to the prior record

(of the recent past vintage) and a roughly 5% increase in

the intensity for May events having a severity of 2015 by

the latter half of the twenty-first century.

Concerning the projected future change in extreme

rainfall associated with El Niño, the results indicate

that despite some changes in the oceanic expression of

El Niño in CESM1, no material transformation oc-

curred in the teleconnection pattern over North

America. Our result thus differs from that of Wang

et al. (2015), who argue that there has been a detect-

able effect of anthropogenic global warming on the

physical processes causing the extreme May 2015

rainfall event. Possible reasons for differing results

are that the inferences drawn by Wang et al. were

based on linear relations between ENSO and the re-

gion’s mean precipitation. No assumptions of linearity

were invoked in our study, and further we utilize ex-

treme value analysis to specifically address event

likelihoods for rainfall severities akin to that occur-

ring in 2015.

While our results indicate that dynamical processes

driving extreme May rainfall over TX/OK appear nei-

ther to have changed materially nor to be projected

to change appreciably over coming decades, thermo-

dynamic conditions nonetheless appear much more

favorable for yielding more extreme rainfall. For in-

stance, atmospheric precipitable water over TX/OK is

projected to increase by about 23% by the late twenty-

first century compared to the twentieth century in

CESM1. Yet, return levels for extreme rainfall events

having a return period close to the 400-yr event of 2015

were found to increase only about 5%. The latter in-

crease matched the overall increase in May climato-

logical rainfall, but was appreciably less than that

implied by simple Clausius–Clapeyron scaling. It

should also be noted that even a 23% increase in pre-

cipitable water in the future would not be sufficient to

explain a rare event as extreme as occurred in 2015, for

which an extreme meteorological condition would

greatly contribute to the magnitude. High precipitable

water alone does not exert a strong constraint for the

occurrence of extreme monthly May rain events over

TX/OK.

b. Discussion

When comparing the early twentieth century to the

recent past and asking the question how climate

change—to date—may have affected the extreme May

2015 TX/OK rainfall event, our model-based analysis

indicates no appreciable change in the underlying

physical relationship between extremeMay rains and El

Niño, involving its associated dynamical teleconnections

[i.e., dP(EjD)’ 0]. While the CESM1 results indicate

some variation in the intensity and frequency of El Niño,
there is an overall lack of agreement among models as

to whether ENSOwill materially change in response to

increasing greenhouse gases, and furthermore owing

to competing effects of different physical processes

responsible for ENSO, the El Niño phenomenon is

found to be relatively insensitive to doubled CO2 in

most coupled models (e.g., Di Nezio et al. 2012). And,

overall dynamics of atmospheric motions, to the ex-

tent those can be reasonably inferred from the vertical

motion and its implied horizontal convergences that

act to lift air masses and yield precipitation, showed

no change to date (i.e., ddynamic’ 0). It might thus

be reasonably surmised, given these indications for

invariant dynamics, that simple thermodynamic con-

siderations (i.e., dthermodynamic) would have de-

scribed the role of climate change in the extreme

rainfall event of May 2015. Yet, the results indicated

that threshold values of extreme rainfall actually in-

crease much less than does the human-induced rise in

column precipitable water, disagreeing with expecta-

tions based upon a simple Clausius–Clapeyron ther-

modynamic relation.

It should be noted that a Clausius–Clapeyron con-

straint on precipitation change related to climate

FIG. A1. Return level (mm) and return period (yr) estimations

based on the exceedances above the 90% quantile of all the May

rainfall of CESM1 simulations. Red line denotes the observed TX/

OKMay 2015 rainfall. The gray lines are the return level ensembles

calculated by combining 5000 samples from the posterior distri-

butions of scale and shape parameters. The upper and lower black

dashed lines, the blue dashed line, and the upper and lower yellow

dashed lines quantify the 75th, 25th, 50th, 97.5th, and 2.5th per-

centiles of the return level ensembles, respectively.
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change is stronger for daily extremes than for patterns

of mean precipitation (e.g., Pall et al. 2007), and it is

unclear whether constraints on monthly extremes

studied herein should be more analogous to those of

daily extremes or to mean changes. Concerning the

2015 event, this month-long deluge in nature was

triggered by tremendous precipitation accumulated

over the course of several very wet days. In this regard,

it is not unrealistic to expect that a Clausius–Clapeyron

relation would be a useful predictor for this extreme

magnitude whose physical attributes are close to the

statistics of daily precipitation extremes.

However, a simplified narrative that solely depends

upon thermodynamic considerations associated with

increased column precipitable water, implicitly invok-

ing a Clausius–Clapeyron argument for explaining the

human-induced contribution to changes in extreme

rainfall probabilities over TX/OK, would fail in this case

using either May monthly or daily extremes. As men-

tioned previously, we have found that changes in May

daily extreme rainfall over TX/OK also scaled appre-

ciably less than Clausius–Clapeyron, consistent with the

results of Sillman et al. (2013), who found no change by

FIG. A3. Return level (mm) and return period (yr) estimations

based on the exceedances above the 90% quantile of El Niño–
relatedMay rainfall during (a) 1920–50, (b) 1985–2015, and (c) 2050–

80 using CESM1 simulations. The red line denotes the observed

TX/OK May 2015 rainfall. The gray lines are the return level en-

sembles calculated by combining 5000 samples from the posterior

distributions of scale and shape parameters. The upper and lower

black dashed lines, the blue dashed line, and the upper and lower

yellow dashed lines quantify the 75th, 25th, 50th, 97.5th, and 2.5th

percentiles of the return level ensembles, respectively.

FIG. A2. Return level (mm) and return period (yr) estima-

tions based on the exceedances above the 90% quantile of

(a) El Niño, (b) La Niña, and (c) ENSO-neutral related May

rainfall using CESM1 simulations. The red line denotes the

observed TX/OK May 2015 rainfall. The gray lines are the re-

turn level ensembles calculated by combining 5000 samples

from the posterior distributions of scale and shape parameters.

The upper and lower black dashed lines, the blue dashed line,

and the upper and lower yellow dashed lines quantify the 75th,

25th, 50th, 97.5th, and 2.5th percentiles of the return level en-

sembles, respectively.
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the end of the twenty-first century in warm season

Rx5Day (monthly maximum consecutive 5-day pre-

cipitation) values over a region of central North

America that includes our TX/OK region. This owes in

part to the weak constraint between variations in pre-

cipitable water and the intensity of extreme rainfall,

which was also discovered in a study of an extreme daily

rainfall event during summer over Colorado (Hoerling

et al. 2014).

In fact, our results indicate either that an absolute

water vapor availability paradigm for thermodynamic

driving of changes in extreme rains over TX/OK in

May is too simple, in that the physical link is not de-

terministic, or that other important thermodynamic

changes might also be operative. To the latter point, we

note that boundary layer relative humidity (1000–850mb)

decreases over most continental regions in the CESM1

experiments during May as low-level temperature rises

more rapidly than does the absolute moisture content

(Fig. 12). The CESM1 projections indicate that near-

surface relative humidity declines about 5% in 2050–80

relatively to 1920–50 over the TX/OK region. Obser-

vational analysis of land surface relative humidity trends

during 1973–2013 show a decline of roughly23% (Willett

et al. 2014), qualitatively consistent with the model simu-

lations. Thus, dynamical driving that lifts large-scale air

masses to their level of condensation must lift such air

masses farther in the warmer climate compared to the

early twentieth century (approximately an additional

100m; see Lawrence 2005). For a dry adiabatic lapse

rate in the well-mixed boundary layer [18C (100m)21],

air masses having 5% lower relative humidity would

presumably reach saturation at a temperature that is

;18C cooler. The water vapor condensed at that level

would likewise be less owing to the cooler temperature,

thereby compensating for some of the absolute increase

in column precipitable water.

An inference of the effectiveness of human-induced

changes in dynamic and thermodynamic driving of

changes in extreme rains can be made by estimating

the regression coefficients of the two physical com-

ponents in Eq. (4). Under the assumption of no change

in underlying dynamics (i.e., ddynamic’ 0), in order

to scale the 23% increase in water vapor content (i.e.,

dthermodynamic’ 23%) to the 5% increase in pre-

cipitation (return level) (i.e., dE) as projected in CESM1

by the end of the twenty-first century, the coefficient

(i.e., a2) of changes in thermodynamics is around 0.22.

Note that this value would have uncertainty given the

weak correlation between column water and extreme

rainfall. Notwithstanding, the inference is that roughly

22% of the moisture increase would be realized as an

FIG. A4. Return level (mm) and return period (yr) estimations based on the exceedances above the 90% quantile

of May rainfall during 1920–50 (blue), 1985–2015 (red), and 2050–80 (magenta) using CESM1 simulations. Box

plots of distributions of return levels show the median (center mark) and the 25th (lower edge) and 75th (upper

edge) percentiles, and thewhiskers quantify the 95%credible interval. Red dots are the observedTX/OKMay 2015

rainfall.
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increase in the intensity of extreme rains. In other words,

the effectiveness of the thermodynamic change related

to rising column water is low in this scenario. Reasons

for the low value of a2 would include the presence of

other competing thermodynamic factors, such as the

decline in relative humidity identified herein.

The availability of large ensemble climate simula-

tions facilitated a statistically robust estimate of

changes in tail events, which is otherwise difficult

from the short instrumental record alone. Our use of

Bayesian inference in the diagnosis provided an es-

timate of uncertainty for distribution parameters and

return levels simultaneously. We thereby concluded

that, at 95% confidence level, our statistical esti-

mates support an argument for the necessary role of

El Niño in the occurrence of a rainfall magnitude as

extreme as the 2015 event. Despite these strengths,

we note that an event of the magnitude of May 2015

was exceedingly rare, and that even with the presence

of El Niño the probability of occurrence remains very

low. Despite the sampling benefits of large ensem-

bles, the uncertainty in our assessments is nonetheless

large. Further, all uncertainties were not considered (e.g.,

the dependency of results on different climate model

simulations). Our model only represents one of the

possible scenarios in response to climate forcings,

although its overall mean climate sensitivity lies

within the spread of CMIP5 multimodel simulations.

Alternative models with different physical structures

should be consulted for a comprehensive assessment

of extreme event sensitivity to thermodynamic and

dynamic drivers (Pfahl et al. 2017).

Despite having applied a quantitative approach to

estimating changes in extreme rainfall events of the

FIG. B1. Averaged composites of sea surface temperature anomalies (8C) from CESM1 simulations based on

(left) all El Niño events and (right) the wettest May El Niño events, i.e., top 10%May El Niño events, relative to

(a),(b) the historical period of 1920–50, (c),(d) the recent past period of 1985–2015, and (e),(f) the future period

of 2050–80, respectively.
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type observed during May 2015 over TX/OK, our

diagnosis of separate effects of dynamic and ther-

modynamic drivers was qualitative. Eventually, a

parametric approach could be explored in order to

better address and quantify dynamic and thermo-

dynamic processes. Such methods would yield pre-

dictive information associated with the underlying

factors. We also note that our conclusions are repre-

sentative of the extreme rainfall behavior for the

month of May, and for the TX/OK region only. Find-

ings and results may vary in other regions and other

seasons; thus, a global analysis should be explored. A

comprehensive assessment on the role of anthropo-

genic contributions to El Niño–related extreme rainfall

is warranted in order to test whether the invariance of

El Niño–related dynamics linked to southern U.S.

springtime extreme rainfall is also true for other

teleconnection pathways such as tropical Walker cir-

culation dynamics.
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FIG. B2. Averaged composites of precipitation anomalies (mmday21) from CESM1 simulations based on (left)

all El Niño events and (right) the wettest May El Niño events, i.e., top 10% May El Niño events, relative to

(a),(b) the historical period of 1920–50, (c),(d) the recent past period of 1985–2015, and (e),(f) the future period of

2050–80, respectively.
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APPENDIX A

Return Level (mm) and Return Period (year)
Estimations for Extreme May Rainfall

under Conditions

Figures show the return level of extreme May rainfall

1) without other conditions (Fig. A1), 2) under ENSO

conditions (Fig. A2), 3) under the presence of El Niño
for the historical, recent past and future periods (Fig.

A3), and 4) for the historical, recent past and future

periods (Fig. A4).

APPENDIX B

Comparison between All El Niño Events and The
Wettest May El Niño Events

Figures show the averaged composites of sea surface

temperature anomalies (Fig. B1), precipitation anomalies

FIG. B3. Averaged composites of geopotential height anomalies (m) at 250 hPa (Z250) based on (left) all El Niño
events and (right) the wettestMayEl Niño events, i.e., top 10%MayElNiño events, relative to (a),(b) the historical
period of 1920–50, (c),(d) the recent past period of 1985–2015, and (e),(f) the future period of 2050–80, respectively.
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(Fig. B2), and geopotential height anomalies (Fig. B3)

for the historical, recent past, and future periods.
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